Cloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate proteoglycan.
نویسندگان
چکیده
Cloned bovine aortic endothelial cells were cultured with [35S]Na2SO4 and proteolyzed extensively with papain. Radiolabeled heparan sulfate was isolated by DEAE-Sephacel chromatography. The mucopolysaccharide was then affinity fractionated into two separate populations utilizing immobilized antithrombin. The heparan sulfate, which bound tightly to the protease inhibitor, represented 0.84% of the mucopolysaccharide mass, accounted for greater than 99% of the initial anticoagulant activity, and exhibited a specific activity of 1.16 USP units/10(6) 35S-cpm. However, the heparan sulfate that interacted minimally with the protease inhibitor constituted greater than 99% of the mucopolysaccharide mass, represented less than 1% of the starting biologic activity, and possessed a specific anticoagulant potency of less than 0.0002 USP unit/10(6) 35S-cpm. An examination of the disaccharide composition of the two populations revealed that the high-affinity heparan sulfate contained a 4-fold or greater amount of GlcA----GlcN-SO3-3-O-SO3 (where GlcA is glucuronic acid), which is a marker for the antithrombin-binding domain of commercial heparin, as compared with the depleted material. Cloned bovine aortic endothelial cells were incubated with [35S]Na2SO4 as well as tritiated amino acids and completely solubilized with 4 M guanidine hydrochloride and detergents. The double-labeled proteoglycans were isolated by DEAE-Sephacel, Sepharose CL-4B, and octyl-Sepharose chromatography. These hydrophobic macromolecules were then affinity fractionated into two separate populations utilizing immobilized antithrombin. The heparan sulfate proteoglycans which bound tightly to the protease inhibitor represented less than 1% of the starting material and exhibited a specific anticoagulant activity as high as 21 USP units/10(6) 35S-cpm, whereas the heparan sulfate proteoglycan that interacted weakly with the protease inhibitor constituted greater than 99% of the starting material and possessed a specific anticoagulant potency as high as 0.02 USP unit/10(6) 35S-cpm. The high-affinity heparan sulfate proteoglycan is responsible for more than 85% of the anticoagulant activity of the cloned bovine aortic endothelial cells. Binding studies conducted with 125I-labeled antithrombin demonstrated that these biologically active proteoglycans are located on the surface of cloned bovine aortic endothelial cells.
منابع مشابه
Localization of anticoagulantly active heparan sulfate proteoglycans in vascular endothelium: antithrombin binding on cultured endothelial cells and perfused rat aorta
We have studied the interaction of 125I-antithrombin (125I-AT) with microvascular endothelial cells (RFPEC) to localize the cellular site of anticoagulantly active heparan sulfate proteoglycans (HSPG). The radiolabeled protease inhibitor bound specifically to the above HSPG with a Kd of approximately 50 nM. Confluent monolayer RFPEC cultures exhibited a linear increase in the amount of AT bound...
متن کاملRole for heparan sulfate proteoglycan in thrombin-induced calcium transients and nitric oxide production in aortic endothelial cells.
Thromb Haemost 2008; 100: 374–376 Activation of protease-activated receptors (PAR), a subfamily consisting of four members (PAR-1 to PAR-4) of seven-transmembrane-spanning G protein-coupled receptors, plays a significant role in vascular physiology and pathophysiology. The multifunctional endolytic serine protease thrombin is known to activate PAR, especially PAR-1 in vascular endothelial cells...
متن کاملModulation of sulfated proteoglycan synthesis by bovine aortic endothelial cells during migration
The rates of 35S-sulfate incorporation into proteoglycan were compared in multi-scratch wounded and confluent cultures of bovine aortic endothelial cells to determine whether proteoglycan synthesis is altered as cells are stimulated to migrate and proliferate. Incorporation was found to be stimulated in a time-dependent manner, reaching maximal levels 44-50 h after wounding, as cells migrated i...
متن کاملEndothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation
Cultured bovine capillary endothelial (BCE) cells were found to synthesize and secrete high molecular mass heparan sulfate proteoglycans and glycosaminoglycans, which bound basic fibroblast growth factor (bFGF). The secreted heparan sulfate molecules were purified by DEAE cellulose chromatography, followed by Sepharose 4B chromatography and affinity chromatography on immobilized bFGF. Most of t...
متن کاملTransforming Growth Factor‐β1 Modulates the Expression of Syndecan‐4 in Cultured Vascular Endothelial Cells in a Biphasic Manner
Proteoglycans are macromolecules that consist of a core protein and one or more glycosaminoglycan side chains. Previously, we reported that transforming growth factor-β1 (TGF-β1 ) regulates the synthesis of a large heparan sulfate proteoglycan, perlecan, and a small leucine-rich dermatan sulfate proteoglycan, biglycan, in vascular endothelial cells depending on cell density. Recently, we found ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 261 16 شماره
صفحات -
تاریخ انتشار 1986